Total Synthesis of Streptonigrone

Dale L. Boger," Kenneth C. Cassidy, and Shinsuke Nakahara
Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037

Received June 16, 1993*

Abstract

The first total synthesis of streptonigrone (1) is detailed and is based on the implementation of a roomtemperature, inverse electron demand Diels-Alder reaction of the N-sulfonyl-1-aza-1,3-butadiene 11 for introduction of the fully substituted pyridone (C ring) central to the agent structure. Azadiene 11 generation was effectively accomplished through conversion of the corresponding oxime to the O-sulfinate followed by in situ, room-temperature homolytic rearrangement to the N-sulfonylimine. Following the room-temperature [4+2] cycloaddition of 11 with 1,1-dimethoxypropene, which completed the assemblage of the carbon skeleton of 1 , a unique reaction sequence leading to aromatization of the central C ring was implemented taking special advantage of a base-catalyzed elimination of the methanesulfonamide via a sulfene. Subsequent introduction of the C ring C 5 amine through modified Curtius rearrangement of the carboxylic acid 18 preceded a gratifying selective Fremy's salt oxidation of 20 to the key 7 -bromoquinoline-5,8-quinone 21 conducted under biphasic, phase-transfer reaction conditions. The late-stage introduction of the 7 -amino-6-methoxyquinoline- 5,8 -quinone AB ring system completed the synthesis of 1 and required the development and implementation of an improved metal-catalyzed ($\left.\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}\right)$ methoxide C 6 nucleophilic substitution reaction.

Streptonigrone (1), a highly substituted and densely functionalized quinoline-5,8-quinone isolated from an unidentified Streptomyces species (IA-CAS isolate no. 114) ${ }^{\text {1a }}$ or Streptomyces albus var. bruneomycini ${ }^{1 \mathrm{~b}}$ as a minor component of the culture broths and identified through extensive spectroscopic characterization, ${ }^{\text {1a }}$ represents the newest number of a historically important class of potent antitumor antibiotics including streptonigrin (2), ${ }^{2,3}$ lavendamycin (3), ${ }^{4}$ and related congeners. ${ }^{5}$ Recent investigations have detailed additional potent antiviral and reverse transcriptase inhibitory activity for streptonigrin ${ }^{6}$ and have demonstrated that simple quinoline- 5,8 -quinones related to its AB ring system also display this potent biological activity. ${ }^{7}$ In a

[^0]

continued effort to achieve the total synthesis of natural ${ }^{8,9}$ and synthetic ${ }^{10,11}$ members of this important class of antitumor antibiotics and in conjunction with efforts to delineate the structural and functional features contributing to their biological properties, herein we detail a convergent total synthesis of streptonigrone. ${ }^{12}$

Central to our synthetic strategy was the implementation of a room-temperature, inverse electron demand Diels-Alder reaction 12 of the N-sulfonyl-1-aza-1,3-butadiene 11 for the intro-

Scheme I

11
12

duction of the central pyridone C ring ${ }^{13}$ with completion of the assemblage of the full carbon skeleton of 1 (Scheme I). The deliberate complementary incorporation of a C3 electronwithdrawing substituent into the electron-deficient azadiene 11 could be expected to further accelerate its rate of participation in the $\mathrm{LUMO}_{\text {diene }}$-controlled Diels-Alder reaction and reinforce the inherent cycloaddition regioselectivity. ${ }^{14}$ The use of the C3 carboxylate incorporated into the azadiene as a lactone was anticipated to serve two additional strategic functions. First, it was anticipated to serve as a convenient means of selectively protecting the D ring phenol, and ultimately, it was expected to serve as a suitable functionality for the introduction of the pyridone C5 amine through implementation of a modified Curtius rearrangement. Finally, the use of 4^{15} and its incorporation into the 7 -bromo- 8 -hydroxyquinoline 15 was anticipated to provide an appropriately functionalized precursor for the late-stage introduction of the fully functionalized $A B$ quinone of $\mathbf{1}$ following a novel protocol introduced in our past studies. ${ }^{16}$

Friedlander condensation ${ }^{17}$ of pyruvic acid with 2 -amino-3-(benzyloxy)-4-bromobenzaldehyde ($4 ; \mathrm{NaOH}, \mathrm{CH}_{3} \mathrm{OH}, 58^{\circ} \mathrm{C}$, 6 h) followed by Fischer esterification ($\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{OH}, 24^{\circ} \mathrm{C}, 5$ h) of the crude carboxylic acid 5 provided 6 in excellent conversions (85\%) (eq 1). Initial attempts to conduct the Friedlander condensation of 4 with methyl pyruvate to provide 6 directly

[^1]
under a variety of reaction conditions led to mixtures of 5 and 6 due to in situ ester hydrolysis by adventitious water liberated in the initial condensation. Subsequent low-temperature addition of the lithium enolate of ethyl acetate to 6 provided the β-keto ester 7 and proved to proceed in highest conversions (71-86\%) if nearly stoichiometric ($1.25-1.5$ equiv) rather than the typical 2 -fold excess enolate was employed. Presumably this is the consequence of a slow breakdown of the initial ester-enolate tetrahedral addition product due to metal alkoxide complexation with the adjacent quinolinyl nitrogen, resulting in slow liberation of the acidic β-keto ester. Condensation of 7 with 3,4 -dimethoxy-2-hydroxybenzaldehyde (8) ${ }^{18}$ provided 9 smoothly in high yield ($75-81 \%$) in refluxing EtOH containing a catalytic amount of piperidine (Scheme II). Typically, the large-scale conversion of 6 to 9 could be conducted without the deliberate chromatographic purification of 7 and generally provided 9 in $60-65 \%$ overall yield for the two steps.
Two approaches to the generation of 11 required for use in the $\mathrm{LUMO}_{\text {diene }}$-controlled Diels-Alder reaction were examined (Scheme III). The first, which proved to be very reliable, required conversion of 9 to the oxime $10\left(\mathrm{NH}_{2} \mathrm{OH}-\mathrm{HCl}, \mathrm{EtOH}\right.$, reflux, $5 \mathrm{~h})$ followed by oxime O -methanesulfinate formation $\left(\mathrm{CH}_{3}\right.$ $\mathrm{SOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$) and room-temperature, in situ homolytic rearrangement. ${ }^{14,19,20}$ This sequence dependably provided the desired N-(methylsulfonyl)-1-aza-1,3-butadiene 11 in good overall yield ($51-63 \%$), and only the major anti versus minor syn oxime isomer was found to productively participate in the homolytic O-sulfinate $\rightarrow N$-sulfonyl rearrangement reaction. In addition, the N-sulfonylimine 11 proved to be sensitive to hydrolysis by adventitious water. Consequently, the conversions of anti-10 to 11 were found to be optimal if crude 11 was not subjected to a standard aqueous workup procedure but subjected directly to a short SiO_{2} plug purification followed by CHCl_{3-} hexane trituration to remove the final trace impurities, and material prepared using this protocol could be dependably employed in the subsequent $[4+2]$ cycloaddition cascade. Alternatively, a direct TiCl_{4}-promoted (1.3 equiv) condensation of 9 with methanesulfonamide (1.2 equiv, 3 equiv of $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2}$ $\mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 6 \mathrm{~h}$) could be employed to provide 11 in high yield ($60-84 \%$). However, the material prepared using this procedure proved somewhat capricious to subsequent purification $\left(\mathrm{SiO}_{2}\right)$ and to its participation in a productive [$4+2]$ cycloaddition reaction. Presumably this may be attributed to the hydrolytic lability of the N-sulfonylimine as well as the subsequent sensitivity of the dienophile 12 and the [$4+2$] cycloadduct 13 to contaminates derived form the TiCl_{4}-promoted condensation reaction. The preparative material employed in our synthetic efforts was derived from the former two-step generation of 11 via the intermediate oxime 10 prior to investigation of the direct conversion of 9 to 11. In our optimization of this former reaction sequence, the anti isomer of oxime 10 which was determined to productively participate in the homolytic O-sulfinate $\rightarrow N$-sulfonyl rear-

[^2]
Scheme II

Scheme III

rangement conveniently crystallized directly from the reaction mixture and was isolated free of contaminant syn oxime by simple filtration.
Treatment of 11 with 1,1 -dimethoxypropene 12^{22} at room temperature ($1 \mathrm{~h}, \mathrm{C}_{6} \mathrm{H}_{6}$) led to the formation of the sensitive [4 +2] cycloadduct 13^{23} (Scheme IV). Efforts to purify and characterize 13 led to hydrolysis, ${ }^{24}$ and consequently it was most expediently taken on without attempted purification. Following an aromatization protocol disclosed in prior studies, ${ }^{13}$ treatment

[^3]of $\mathbf{1 3}$ with t - BuOK (THF, $-30^{\circ} \mathrm{C}, 1 \mathrm{~h}$) followed by DDQ $\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$) provided 15. Analogous to prior observations, ${ }^{13}$ this unusual aromatization sequence presumably proceeds with intermediate generation of an imidate of 14 derived from deprotonation of the methansulfonamide, loss of sulfene facilitated by vinylogous amide activation of the departing amine, and finally loss of methoxide. Subsequent aromatization of 14 upon DDQ treatment provided 15. Although the isolation and characterization of 13-14 were attempted in initial studies, the conversion of $\mathbf{1 3}$ to $\mathbf{1 5}$ proved most convenient without their deliberate intermediate purification and typically provided 15 in 52-65\% overall yield for the three steps. In our optimization of this sequence, it was determined that the source, and consequently the purity, of the dienophile 12 had a significant effect on the observed conversions. Ketene acetal 12 prepared by $\mathrm{Fe}(\mathrm{CO})_{5}$ catalyzed isomerization of acrolein dimethyl acetal ($0.05-0.01$ equiv, $\mathrm{h} \nu$, neat, Pyrex, $\left.25^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)^{22}$ proved substantially superior to the material prepared by strong base-catalyzed isomerization $\left(\mathrm{KNH}_{2}, \mathrm{NH}_{3}-\mathrm{Et}_{2} \mathrm{O},-30^{\circ} \mathrm{C}, 2 \mathrm{~h}\right) .{ }^{25}$

Hydrolysis of the lactone 15 ($4 \mathrm{~N} \mathrm{LiOH}, \mathrm{DMSO}, 60^{\circ} \mathrm{C}, 6 \mathrm{~h}$) followed by protection of the free phenol as its methoxymethyl ether under conditions that led to carboxylic acid esterification ($\mathrm{NaH}, \mathrm{DMF}, \mathrm{ClCH}_{2} \mathrm{OCH}_{3}, 25^{\circ} \mathrm{C}, 1-1.5 \mathrm{~h}, 96 \%$) afforded 17. Subsequent ester hydrolysis ($4 \mathrm{NLiOH}, \mathrm{DMSO}, 130-135^{\circ} \mathrm{C}$, $6 \mathrm{~h}, 71-76 \%$) provided 18 in excellent overall yield, and this two-step conversion of $\mathbf{1 6}$ to $\mathbf{1 8}$ proved superior to efforts to selectively protect the phenol in the presence of the free carboxylic acid. Modified Curtius rearrangement on the free carboxylic acid employing the Shioiri-Yamada reagent $\left((\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}\right.$, benzene- $\left.\mathrm{H}_{2} \mathrm{O}\right)^{26,27}$ provided 19 and permitted the introduction of the pyridone C5 amine. Surprisingly, the intermediate isocyanate derived from Curtius rearrangement of the acyl azide proved unusually stable, and the conversion of $\mathbf{1 8}$ to 19 required the deliberate addition of hydroxide ($4 \mathrm{~N} \mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$) to the reaction mixture to complete the isocyanate hydrolysis. Attempts to trap the isocyanate in situ with $\mathrm{H}_{2} \mathrm{O}$ or tert-butyl alcohol to provide 19 or the corresponding tert-butylcarbamate

[^4]
Scheme IV

Scheme V

proved unsuccessful and led to isolation of the isocyanate and/or its corresponding acyl azide derivative. ${ }^{28}$

Several additional observations made in regard to the conduct of the conversion of $\mathbf{1 5}$ to 19 proved important. Similar to the results of prior studies with related substrates, $8,9.13$ the C5 ester of $\mathbf{1 7}$ proved unusually resistant to hydrolysis as a consequence of the steric hinderance provded by the two flanking ortho aryl substituents. While this sterically hindered ester hydrolysis was not satisfactorily addressed in prior studies and although standard hydrolysis conditions failed to effect the conversion of $\mathbf{1 7}$ to 18 , the use of the more vigorous conditions detailed herein (130-135 ${ }^{\circ} \mathrm{C}$, DMSO, 71-80\%) coupled with the use of the methoxymethyl ester provided a satisfactory solution to this refractory problem. In addition, the use of $\mathrm{LiOH}-\mathrm{H}_{2} \mathrm{O}_{2}{ }^{29}\left(\mathrm{THF}-\mathrm{H}_{2} \mathrm{O} 6: 1,25^{\circ} \mathrm{C}\right.$, $12-24 \mathrm{~h}, 63-74 \%$) provided an alternative hydrolysis procedure that employed milder reaction conditions but was found to generally provide 18 in lower conversions. Mild methanolysis of the lactone $\mathbf{1 5}$ to provide the methyl ester $\mathbf{2 5}^{30}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3}\right.$ -

[^5]OH-THF $6.5: 1,25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 92 \%$), phenol protection as the methoxymethyl ether $26^{30}\left(\mathrm{MOMCl}, i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CHCl}_{3}\right.$, reflux, $6 \mathrm{~h}, 81 \%$), and subsequent methyl ester hydrolysis of $26(4 \mathrm{~N}$ LiOH, DMSO, $130-135^{\circ} \mathrm{C}, 26 \mathrm{~h}, 42 \%$) provided an alternative sequence for the conversion of $\mathbf{1 5}$ to $\mathbf{1 8}$ (Scheme V). However, 26 proved more resistant to hydrolysis than 17 (76 vs 42%) and, unlike 17, failed to provide 18 upon treatment with $\mathrm{LiOH}-\mathrm{H}_{2} \mathrm{O}_{2}$ (THF- $\mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$), ${ }^{29} \mathrm{LiOH}\left(\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, 100^{\circ} \mathrm{C}\right.$), or KOH ($\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ or n - $\mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}$, reflux, 24h).
The remaining task of introducing the fully functionalized streptonigrone AB quinone was designed to follow selective deprotection of the benzyl ether 19 with the anticipated, but unfounded, potential that a D ring free phenol would undergo competitive quinone oxidation. After considerable effort to selectively deprotect the benzyl ether of $19^{30 \mathrm{~b}}$ in the presence of the methoxymethyl ether, the deliberate conversion of $\mathbf{1 9}$ to $\mathbf{2 0}$ with deprotection of both the benzyl and MOM ethers was found to proceed in high yield (saturated $\mathrm{HBr}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2-6 \mathrm{~h}$, $70-80 \%$). Although not essential to our synthetic efforts, a gratifying and predictably selective oxidation of the 8 -hydroxyquinoline of $\mathbf{2 0}$ to provide 21 was accomplished cleanly with potassium nitrosodisulfonate (8-12 equiv of Fremy's salt) ${ }^{31}$ under the conditions of Kende's two-phase reaction system ${ }^{9}$ ($1: 1 \mathrm{CH}_{2}$ -$\mathrm{Cl}_{2}-0.05 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}, 1.1$ equiv of $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}, 25^{\circ} \mathrm{C}, 3-6 \mathrm{~h}$, $64-73 \%$). The selective oxidation of the A versus D ring phenol of $\mathbf{2 0}$ may be attributed in part to the ease of carbon versus oxygen phenoxyl radical trap by the reagent with loss of quinolyl versus aryl delocalization energy. It is also notable that the C ring C5 amine did not competitively interfere with this oxidation reaction and, thus, could be carried through the synthesis without deliberate protection. Alternative procedures for the use of Fremy's salt (4-6 equiv) including the conventional homogeneous reaction conditions of acetone- $0.05 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}(1: 1)$ and CH_{3} -$\mathrm{OH}-0.05 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ (1:1 or 6:1) proved much less effective, resulting in no or slow reaction, and the omission of the phasetransfer agent $\left(\mathrm{Bu}_{4} \mathrm{NHSO}_{4}\right)$ from the Kende two-phase reaction conditions led to recovered starting material.
In the conduct of the optimization of the conversion of 19 to 20, we determined that treatment with $\mathrm{HBr}(\mathrm{g})$ for shorter reaction periods under the mild reaction conditions ($0^{\circ} \mathrm{C}$) led to clean cleavage of the methoxymethyl ether and only partial cleavage of the benzyl ether, while substantially longer treatment $\left(0^{\circ} \mathrm{C}\right)$ or treatment under more vigorous reaction conditions (refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) led to diminished yields resulting from presumed cleavage of the C ring C 2 methyl ether. The finely tailored conditions devised for the conversion of 19 to 20 proved technically uneventful to conduct, but as detailed later, the observations made in their development provided an effective solution to the selective cleavage of the C ring C 2 methyl ether and the final step of the total synthesis.
This set the stage for the final- and late-stage introduction of the fully functionalized 7 -amino-6-methoxyquinoline- 5,8 -quinone AB ring system of 1. In conjunction with efforts to achieve the

[^6]
Scheme VI

total synthesis of 2-3 3,9 and structurally simplified analogs, ${ }^{9,11.15,16}$ we previously disclosed a divergent introduction of the lavendamycin 7 -aminoquinoline-5,8-quinone and streptonigrin 7 -ami-no-6-methoxyquinoline-5,8-quinone AB ring systems from a common 7 -bromoquinoline-5,8-quinone intermediate (Scheme VI). Key to the introduction of the 7 -amino-6-methoxyquinoline-5,8-quinone system was the metal-catalyzed $\left(\mathrm{CeCl}_{3}\right) \mathrm{C} 6$ nucleophilic addition of methoxide to a 7 -bromoquinoline-5,8-quinone. In this reaction, the coordination of Ce (III) with the substrate reverses the normal C7 regioselectivity of methoxide nucleophilic addition and stabilizes the hydroquinone addition product, preventing reversal of the $\mathbf{C} 6$ nucleophilic substitution reaction. In the course of our efforts, we encountered difficulty implementing the CeCl_{3}-catalyzed C 6 methoxide addition reaction with 21. Consequently, we conducted a more extensive study of the metal-catalyzed ${ }^{32}$ nucleophilic C 6 substitution reaction of 7-bromoquinoline-5,8-quinones with methoxide which extends the observations made with CeCl_{3} to additional more effective metal catalysts.

Representative results of this study with the simple bromoquinones $27 a, b$ are provided in Table I. From a survey of a range of Lewis acids, $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ and ZnBr_{2} were found to cleanly catalyze the C 6 nucleophilic substitution reaction of NaOMe with 27a to provide 28a in high yield without evidence of competitive C7 substitution (Scheme VII). Of the Lewis acids examined, those which possess the capabilities for ligand complexation through a higher coordination sphere, i.e. Ti(IV), were found to provide clean and high-yielding conversions of 27 to 28 , although simple Lewis acids including LiCl were capable of reversing the regioselectivity of the NaOMe addition. Of the successful metal catalysts examined, $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ has proven the most effective for use with highly functionalized and Lewis acid sensitive substrates.

Unlike the reaction with 27 , treatment of 21 with NaOMe in

[^7]Table I

substrate	$\begin{gathered} \text { equiv } \\ \text { of } \\ \mathrm{NaOMe} \end{gathered}$	equiv, Lewis acid ${ }^{a}$	temp, ${ }^{\circ} \mathrm{C}$ (time, h)	product	$\begin{gathered} \% \\ \text { yield } \end{gathered}$
27a	2.0	none	0 (0.5), 25 (1)	28a	22
				29a	58
27a	2.5	1.5, CeCl_{3}	0 (0.5), 25 (1)	28a	58
27a	2.5	1.5, $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$	0 (0.5), 25 (1)	28a	57
27a	2.0	1.5, ZnBr_{2}	0 (0.5), 25 (1)	28a	57
27a	0	$2.0, \mathrm{Mg}(\mathrm{OMe})_{2}$	0 (0.5), 25 (1)	28a	29
27a	2.0	2.0, Ti(OMe) ${ }_{4}$	0 (0.5), 25 (1)	28a	22
27a	2.0	$2.0, \mathrm{LiCl}$	0 (0.5), 25 (1)	28a	29
				29a	5
27b	2.0	$1.5, \mathrm{CeCl}_{3}$	0 (0.5), 25 (1)	28b	52
27b	2.0	2.0, $\mathrm{Ti}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{4}$	0 (0.5)	28b	53
21	6.0	$2.0, \mathrm{CeCl}_{3}$	0 (1)	22	0
				30	60-65
21	4.0	4.0, CeCl_{3}	0 (0.5), 25 (1)	22	0
				30	54
21	2.0	$3.0, \mathrm{LiCl}$	0 (3)	22	29
				30	0
21	2.0	1.2, $\mathrm{Ti}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{4}$	0 (1)	22	54
				30	19

${ }^{a}$ See ref 33.

Scheme VII

27

a	$R=H$
b	$R=2$-pyidyl

28

the presence of CeCl_{3} led to the generation of $\mathbf{3 0}^{\mathbf{3 4}}$ derived from C 7 methoxide addition-elimination (eq 2). Presumably, the more

(2)

densely functionalized substrate 21 failed to effectively complex the CeCl_{3} in a manner that leads to productive C 6 methoxide

addition. In contrast, both $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ and LiCl catalyzed the C6 addition of methoxide to 21 with the former reagent providing good conversions to 22 upon workup and air oxidation (Table I).

Treatment of 22 with $\mathrm{NaN} \mathrm{N}_{3}$ (1.1 equiv, THF- $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 20$ h) provided the sensitive deep green azide 23 (85\%), and subsequent reduction $\left(\mathrm{NaBH}_{4}, \mathrm{THF}-\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 86 \%\right)$ afforded 24 possessing the fully functionalized AB quinone of 1. In practice, these two steps were conducted without the intermediate purification of the sensitive azido quinone 23 and the overall yields for the conversion of $\mathbf{2 2}$ to 24 improved. Interestingly, the reduction of 23 using more conventional protocols including $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}\left(\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}\right.$, slow reduction) ${ }^{16}$ or $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CH}_{2}-$ Cl_{3} - HOAc in $\mathrm{H}_{2} \mathrm{O}-\mathrm{THF}\left(51 \%\right.$) ${ }^{15.16}$ proved less effective than the simple use of $\mathrm{NaBH}_{4},{ }^{35}$ although this was not investigated in detail.

Final conversion of $\mathbf{2 4}$ to streptonigrone (1) required deprotection of the C ring C 2 methyl ether which had admirably served its purpose throughout the synthesis. This was effectively accomplished by treatment of 24 with $\mathrm{HBr}(\mathrm{g})-\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (reflux, 1.5 h) under an atmosphere of $\mathrm{H}_{2}\left(5 \% \mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}\right)$ which served to prereduce the quinone 24 to the corresponding hydroquinone 31 (Scheme VIII). Acid-catalyzed methyl ether cleavage of 31, which predictably proceeds through preferential pyridine N -protonation with selective activation of the C ring C 2 methyl ether toward cleavage, followed by workup and air oxidation of 32 provided a sample of streptonigrone (1) identical in all compared respects with authentic material (${ }^{1} \mathrm{H}$ NMR, IR, MS, TLC R_{f}, UV , mp). ${ }^{1}$ Efforts to deprotect 24 without reducing the quinone through direct treatment of 24 with $\mathrm{HCl}(\mathrm{g})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(25^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$ or $\mathrm{HBr}(\mathrm{g})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reflux, $1.5 \mathrm{~h}, 76 \%$) led to preferential A ring methyl ether cleavage to provide $33 .{ }^{36}$ Alternative reagents for pyridone methyl ether cleavage ${ }^{37}$ did not prove as successful as the mild treatment with $\mathrm{HBr}(\mathrm{g})$, although this was not investigated in detail.

Extension of these studies to the preparation of key, nonnatural quinoline-5,8-quinones as well as additional studies of the

[^8]
N-sulfonyl-1-aza-1,3-butadiene LUMO $_{\text {diene-controlled }}$ DielsAlder reactions are in progress and will be reported in due course.

Experimental Section

Methyl8-(Benzyloxy)-7-bromoquinoline-2-carboxylate (6). A solution of $\mathrm{NaOH}\left(2.24 \mathrm{~g}, 56 \mathrm{mmol}, 8\right.$ equiv) of 175 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was treated with pyruvic acid ($1.23 \mathrm{~g}, 14 \mathrm{mmol}, 2$ equiv) and 2 -amino- 3 -(benzyloxy)-4-bromobenzaldehyde ${ }^{15}(4 ; 2.14 \mathrm{~g}, 7 \mathrm{mmol})$. The reaction mixture was stirred under N_{2} at $57^{\circ} \mathrm{C}$ for 6 h , diluted with $\mathrm{H}_{2} \mathrm{O}(420 \mathrm{~mL})$, made acidic ($\mathrm{pH} 2-3$) with the addition of 5% aqueous HCl , and extracted with $\mathrm{EtOAc}(420 \mathrm{~mL})$. The organic extract was washed with saturated aqueous NaCl and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated, and the residue was dissolved in 40 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and treated with saturated HCl $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$. The solution was allowed to stir at $24^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$ and the precipitate 6 collected by filtration. Flash chromatography ($3 \times 20 \mathrm{~cm} \mathrm{SiO}, 20 \%$ EtOAc-hexane eluant) afforded pure $6(2.21 \mathrm{~g}, 2.61 \mathrm{~g}$ theoretical, 85%; typically $80-86 \%, 5-10 \mathrm{mmol})$ as a white solid: $\mathrm{mp} 95-96^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.28(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.19$ $(\mathrm{d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.48$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.43-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.07$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 165.8,153.0,147.2$, $142.5,137.5,137.2,132.8,129.9,129.1,128.2,128.0,123.4,121.3,117.6$, 76.8, 52.9; IR (KBr) $\nu_{\max } 1750,1714,1442,1326,1262,1136,1116$, 1088, $726 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $373 / 371\left(\mathrm{M}^{+}, 4\right), 91$ (base); CIMS (2-methylpropane) m/e 374/372 (M ${ }^{+}+\mathrm{H}$, base); EIHRMS $m / e 371.0163\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrNO} \mathrm{H}_{3}\right.$ requires 371.0157$)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrNO}_{3}: \mathrm{C}, 58.08 ; \mathrm{H}, 3.79 ; \mathrm{N}, 3.76$. Found: $\mathrm{C}, 58.07 ; \mathrm{H}$, 3.68; N, 3.70.

Ethyl 3-(8'-(Benzyloxy)-7'-bromoquinolin-2'-yl)-3-oxopropionate (7). Ethyl acetate ($0.73 \mathrm{~mL}, 7.5 \mathrm{mmol}, 1.5$ equiv) was added dropwise to a solution of lithium diisopropylamine ($7.5 \mathrm{mmol}, 1.5$ equiv) in THFhexane (10 mL) freshly prepared from diisopropylamine ($1.05 \mathrm{~mL}, 7.5$ mmol, 1.5 equiv) and $n-\mathrm{BuLi}$ (3 mL of $2.5 \mathrm{M}, 7.5 \mathrm{mmol}, 1.5$ equiv) at $-78^{\circ} \mathrm{C}$. After 15 min at $-78^{\circ} \mathrm{C}$, a solution of $6(1.86 \mathrm{~g}, 5.0 \mathrm{mmol})$ in 8 mL of THF was added slowly. The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 40 min before being allowed to warm to $24^{\circ} \mathrm{C}$. The reaction mixture was poured onto 150 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc (120 mL). The organic extract was washed with saturated aqueous $\mathrm{NaCl}(40$ mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated in vacuo. Flash chromatography ($4 \times 15 \mathrm{~cm} \mathrm{SiO}, 10 \%$ EtOAc-hexane eluant) afforded $7(1.53 \mathrm{~g}, 2.14$ g theoretical, 71%; typically $71-86 \%, 5-10 \mathrm{mmol}$) as a white, crystalline solid: mp $84-85{ }^{\circ} \mathrm{C}$ (EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ $8.30(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.18(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.41-7.34(\mathrm{~m}$, $3 \mathrm{H}), 5.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 4.41(\mathrm{q}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 1.17(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 194.5$, 168.1, 151.3,147.2, 142.0, 137.8,133.3,131.8, 130.5, 128.6,128.4, 128.3, $123.7,118.6,76.8,61.3,44.4,14.0$; IR (KBr) $\nu_{\max } 1726,1700,1444$, $1364,1338,1312,1304,1286,1142,1082,856,758,694 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $429 / 427\left(\mathrm{M}^{+}, 5\right), 91$ (base); CIMS (2methylpropane) $m / e 430 / 428\left(\mathrm{M}^{+}+\mathrm{H}\right.$, base); EIHRMS $m / e 427.0429$ $\left(\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}_{4}\right.$ requires 427.0419). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}_{4}$: C , 59.74; H, 4.56; N, 3.17. Found: C, 59.60; H, 4.26; N, 3.34.

8-(Benzyloxy)-7-bromoquinolin-2-yl 7,8-Dimethoxy-2-oxo-2H-1-ben-zopyran-3-yl Ketone (9). A solution of 3,4-dimethoxy-2-hydroxybenzaldehyde ${ }^{18}(8 ; 1.02 \mathrm{~g}, 5.61 \mathrm{mmol}, 1.3$ equiv) in 30 mL of absolute EtOH was treated with $7(1.85 \mathrm{~g}, 4.32 \mathrm{mmol})$ and 5 drops of piperidine. The reaction mixture was warmed at reflux for 1 h . After the mixture was cooled ($0^{\circ} \mathrm{C}$), the crystalline product was collected by filtration (EtOH wash). Recrystallization from CHCl_{3}-hexane afforded $9(1.91 \mathrm{~g}, 2.36$ g, theoretical, 81%; typically $75-81 \%, 0.1-7 \mathrm{mmol}$) as a yellow, crystalline solid: $\mathrm{mp} 177-178{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
$\delta 8.33(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.77$ (d, $1 \mathrm{H}, J=8.9 \mathrm{~Hz}$), $7.52(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}$, $1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.08-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.32(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}$), $3.99(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 250$ $\mathrm{MHz}) \delta 8.73(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz})$, $7.96(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.2 \mathrm{~Hz}), 7.24(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 2 \mathrm{H}), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}-\right.$ Ph), $3.99(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), $\delta 192.0$, 158.3, 157.2, 152.9, 152.8,148.8, 141.9, 137.8, 137.1,136.0, 132.9, 130.3, 128.1, 128.0, 127.7, 124.9, 123.9, 123.8, 119.6, 117.8, 113.2, 109.0, 77.2, $61.3,56.6$; IR (KBr) $\nu_{\max } 1730,1672,1608,1588,1566,1500,1436$, 1366, 1326, 1284, 1254, 1162, 1110, 1076, 976, $856 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $547 / 545\left(\mathrm{M}^{+}, 2\right), 91$ (base). Anal. Caled for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{BrNO}_{6}: \mathrm{C}, 61.55 ; \mathrm{H}, 3.69 ; \mathrm{N}, 2.56$. Found: C, 61.22; H, 3.58; N, 2.50 .

1-(8^{\prime}-(Benzyloxy)- $\mathbf{7}^{\prime}$-bromoquinolin- $\mathbf{2}^{\prime}$ - -)) 1-hydroxyimino-1-($7^{\prime}, 8^{\prime}$ -dimethoxy- $\mathbf{2}^{\prime}$-oxo- $\mathbf{2}^{\prime} \boldsymbol{H}-1^{\prime}$-benzopyran- $\mathbf{3}^{\prime}$-yl)methane (10). Hydroxylamine hydrochloride ($760 \mathrm{mg}, 10.9 \mathrm{mmol}, 3$ equiv) was added to a stirred solution of $9(2.0 \mathrm{~g}, 3.66 \mathrm{mmol})$ in 100 mL of EtOH at $24^{\circ} \mathrm{C}$. The reaction mixture was warmed at reflux for 5 h and diluted with $\mathrm{H}_{2} \mathrm{O}(80$ mL), and the pH was adjusted to $7.5-8.0$ with the addition of saturated aqueous NaHCO_{3}. The precipitated oxime was collected by filtration (CHCl_{3} wash), and recrystallization from CHCl_{3} afforded anti-10 (1.13 $\mathrm{g}, 2.05 \mathrm{~g}$ theoretical, 53%; typically $50-54 \%, 0.1-4 \mathrm{mmol}$) as a white, crystalline solid: mp $223-224^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 200$ $\mathrm{MHz}) \delta 12.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NOH}), 8.53(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.26$ (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}), 7.84(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.76(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.68(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 7.14-6.92(\mathrm{~m}, 5 \mathrm{H})$, 5.06 (s, 2H, OCH ${ }_{2} \mathrm{Ph}$), $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $75 \mathrm{MHz})$, $\delta 159.2,155.7,151.6,151.3,150.8,147.4,143.2,141.7,136.6$, 136.4, 135.0, 131.1, 128.4, 128.1, 128.0, 127.8, 124.6, 124.5, 124.2, 122.1, $116.2,113.7,109.7,75.6,60.3,56.5$; IR (KBr) $\nu_{\max } 3424,1714,1702$, $1510,1560,1542,1506,1458,1432,1374,1292,1260,1188,1116,1080$, $910,852,696 \mathrm{~cm}^{-1} ;$ EIMS m / e (relative intensity) $562 / 560\left(\mathrm{M}^{+}, 0.2\right)$, 91 (base); CIMS (2-methylpropane) m / e (relative intensity) 563/561 $\left(\mathrm{M}^{+}+\mathrm{H}, 7\right.$), 182 (base); EIHRMS $m / e 560.0583\left(\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{BrN} \mathrm{N}_{2} \mathrm{O}_{6}\right.$ requires 560.0583). Anal. Caled for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{6}$: $\mathrm{C}, 59.91 ; \mathrm{H}, 3.77$; N, 4.99. Found: C, $59.65 ; \mathrm{H}, 3.74$; N, 5.03 .

The CHCl_{3} washings were concentrated in vacuo, and the residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) to afford the syn oxime isomer (18%, typically $10-18 \%$) as a white, crystalline solid: $\mathrm{mp} 180-181^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 200 \mathrm{MHz}\right) \delta 12.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NOH}), 8.49(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=8.8$ $\mathrm{Hz}), 7.73(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.21(\mathrm{~d}, 1 \mathrm{H}$, $J=8.9 \mathrm{~Hz}), 7.23-6.97(\mathrm{~m}, 6 \mathrm{H}), 5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.98(\mathrm{~s}, 3 \mathrm{H})$, 3.64 (s, 3H); IR (KBr) $\nu_{\max } 3366,1708,1604,1504,1458,1438,1430$, $1288,1108,1084,988,850 \mathrm{~cm}^{-1} ;$ EIMS m / e (relative intensity) $562 / 560$ ($\mathrm{M}^{+}, 1$), 91 (base); CIMS (2-methylpropane) m / e (relative intensity) $563 / 561\left(\mathrm{M}^{+}+\mathrm{H}, 30\right), 182$ (base);EIHRMS $m / e 560.0588\left(\mathrm{M}^{+}, \mathrm{C}_{28} \mathrm{H}_{21}-\right.$ $\mathrm{BrN}_{2} \mathrm{O}_{6}$ requires 560.0583).

1-(8'-(Benzyloxy)-7'-bromoquinolin- $\mathbf{2}^{\prime}$-yl)-1-((methylsulfonyl)imino)-1-($7^{\prime}, 8^{\prime}$-dimethoxy- 2^{\prime}-oxo- $\mathbf{2}^{\prime} \boldsymbol{H}-1^{\prime}$-benzopyran- $\mathbf{3}^{\prime}$-yl)methane (11). Method A: A solution of $10(600 \mathrm{mg}, 1.07 \mathrm{mmol})$ in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cooled to $2^{\circ} \mathrm{C}$ under N_{2} was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.49 \mathrm{~mL}, 3.5 \mathrm{mmol}, 3.2$ equiv) and methanesulfinyl chloride ($0.216 \mathrm{~mL}, 3.2 \mathrm{mmol}, 3$ equiv). The resulting reaction mixture was stirred at $2^{\circ} \mathrm{C}$ for 15 min and at $24^{\circ} \mathrm{C}$ for 1 h under N_{2}. The solvent was evaporated, and the residue was purified by flash chromatography ($2 \times 5 \mathrm{~cm} \mathrm{SiO}{ }_{2}, 30 \% \mathrm{EtOAc}$-hexane eluant) to afford 11 ($394 \mathrm{mg}, 665 \mathrm{mg}$ theoretical, 59%; typically $53-63 \%, 0.1-1.1 \mathrm{mmol}$) as a yellow, crystalline solid: $\mathrm{mp} 231-232^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.34(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.29(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $8.05(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.38$ (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}$), $7.18-7.01(\mathrm{~m}, 5 \mathrm{H}), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.99$ $(\mathrm{s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right)$; IR (KBr) $\nu_{\max } 1726,1602$, $1570,1504,1458,1436,1318,1286,1144,1106,1080,982,806 \mathrm{~cm}^{-1}$; CIMS (2-methylpropane) m / e (relative intensity) $625 / 623\left(\mathrm{M}^{+}+\mathrm{H}\right.$, 35), 81 (base); CIHRMS $m / e 623.0487\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{29} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}\right.$ requires 623.0487). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 55.87 ; \mathrm{H}$, 3.72; N, 4.50. Found: C, 55.50; H, 3.67; N, 4.35.

Method B: A solution of $9(310 \mathrm{mg}, 0.57 \mathrm{mmol})$ and methanesulfonamide ($65 \mathrm{mg}, 0.69 \mathrm{mmol}, 1.2$ equiv) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $\mathrm{TiCl}_{4}\left(0.7 \mathrm{~mL}, 0.63 \mathrm{mmol}, 1.15\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.25 \mathrm{~mL}$, $1.8 \mathrm{mmol}, 3.1$ equiv) at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred 30 min at $0^{\circ} \mathrm{C}$ before being allowed to warm to $25^{\circ} \mathrm{C}$. After 6 h , the reaction mixture was diluted with 20 mL of CHCl_{3} and filtered through Celite, after which the solvent was removed in vacuo. Flash chroma-
tography ($2 \times 10 \mathrm{~cm} \mathrm{SiO}, 2,20 \% \mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluant) afforded 11 ($260 \mathrm{mg}, 355 \mathrm{mg}$ theoretical, 75%).

4-(8'-(Benzyloxy)-7'-bromoquinolin-2'-yl)-1-methyl-2,7,8-trimethoxy$5 H$-1-benzopyrano 3,4 -clpyridin-5-one (15). A solution of 11 (312 mg , 0.5 mmol) and 1,1 -dimethoxy-1-propene ${ }^{22}(590 \mu \mathrm{~L}, 5.0 \mathrm{mmol}, 10$ equiv) in 3 mL of $\mathrm{C}_{6} \mathrm{H}_{6}$ was stirred at $24^{\circ} \mathrm{C}$ for 3 h under N_{2}. The reaction mixture was concentrated in vacuo. The residue was dissolved in 5 mL of THF and was treated with t - BuOK ($281 \mathrm{mg}, 2.5 \mathrm{mmol}, 5$ equiv). The reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 1 h before it was poured onto 40 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc (50 mL). The organic extract was washed with saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and treated with DDQ ($115 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv), and the reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 1 h . The precipitate (hydroquinone) was removed by filtration, and the filtrate was concentrated in vacuo. Flash chromatography ($2 \times 5 \mathrm{~cm} \mathrm{SiO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluant) afforded 15 (199 mg , 307 mg theoretical, 65%; typically $52-65 \%, 0.1-1.5 \mathrm{mmol}$) as a white, crystalline solid: mp $227-228{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $200 \mathrm{MHz}) \delta 8.27(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.98(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.80$ (d, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}$), $7.76(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.50$ (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}$), $7.16-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 5.43$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 164.5,159.4,159.0,158.2,154.7,152.6$, $146.9,143.5,142.7,137.7,136.7,136.5,130.8,128.7,128.5,128.0,127.6$, 123.8, 123.5, 121.6, $117.0,113.8,112.8,109.9,107.3,76.8,61.4,56.3$, 54.7, 15.3; IR (KBr) $\nu_{\text {max }} 1734,1606,1562,1544,1514,1362,1302$, 1272, 1222, 1120, 1082, $1004 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 614/ $612\left(\mathrm{M}^{+}, 2\right), 91$ (base); CIMS (2-methylpropane) $m / e 615 / 613\left(\mathrm{M}^{+}+\right.$ H , base); CIHRMS $m / e 613.0918\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{32} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{6}\right.$ requires 613.0974). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{6}: \mathrm{C}, 62.65 ; \mathrm{H}, 4.11 ; \mathrm{N}, 4.57$. Found: C, 62.44; H, 3.86; N, 4.65 .

2-(8^{\prime}-(Benzyloxy)- 7^{\prime}-bromoquinolin- $\mathbf{2}^{\prime}$-yl)-4-($\mathbf{3}^{\prime}, 4^{\prime}$-dimethoxy- $\mathbf{2}^{\prime}$-hy-droxyphenyl)-6-methoxy-5-methylpyridine-3-carboxylic Acid (16). A solution of $15(150 \mathrm{mg}, 0.24 \mathrm{mmol})$ and 4 N aqueous LiOH (1.96 mmol , $0.49 \mathrm{~mL}, 8$ equiv) in 1.5 mL of DMSO was warmed at $60^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was allowed to cool to $25^{\circ} \mathrm{C}$, poured into 40 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The organic extract was washed with saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent in vacuo afforded 16 (149 $\mathrm{mg}, 154 \mathrm{mg}$ theoretical, 97%; typically $89-97 \%$) as a white solid: mp ${ }^{124-125}{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.45(\mathrm{~d}$, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}$), $8.26(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.80$ $(\mathrm{d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.52(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.43(\mathrm{~d}, 1 \mathrm{H}, J=10.9$ $\mathrm{Hz}, \mathrm{OC} H \mathrm{HPh}$), $5.30(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{Ph}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 3.92$ $(\mathrm{s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 169.7$, $161.5,156.3,152.4,152.0,146.9,146.8,146.7,141.8,137.1,137.0,135.8$, 131.2,128.7,128.5,128.2, 127.9, 124.6, 124.1, 123.5, 121.9, 121.6, 117.9, 117.4, 103.9, 76.6, 61.0, 55.7,53.8, 12.9; IR (KBr) $\nu_{\max } 3282$ (br), 2942, 1725, 1605, 1521, 1508, 1461, 1437, 1386, 1293, 1273, 1213, 1115, 1097, $1004 \mathrm{~cm}^{-1} ;$ FABHRMS (NBA) $m / e 631.1080\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{32} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{7}\right.$ requires 631.1059).
Methoxymethyl 2-(8'-(Benzyloxy)-7 7^{\prime}-bromoquinolin- 2^{\prime} - \mathbf{y}) $)$-4-($3^{\prime}, 4^{\prime}-$ dimethoxy- 2^{\prime}-(methoxymethoxy) phenyl)-6-methoxy- 5 -methylpyridine-3carboxylate (17). A solution of 16 ($154 \mathrm{mg}, 0.24 \mathrm{mmol}$) in 2 mL of dry DMF was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{NaH}(60 \%$ in oil, $37 \mathrm{mg}, 0.90$ mmol, 4.0 equiv) under N_{2}. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min before being treated with $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Cl}(75 \mu \mathrm{~L}, 0.9 \mathrm{mmol}, 4.0$ equiv). After $15 \min$ at $0^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 1 h before being poured into 10 mL of $\mathrm{H}_{2} \mathrm{O}$. The white precipitate which formed was collected by filtration and dried in vacuo to afford pure 17 ($168 \mathrm{mg}, 175 \mathrm{mg}$ theoretical, 96%; typically $92-96 \%)^{38}$ as a white solid: $\mathrm{mp} 136-137^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.46(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.24(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $7.63(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.29$ $(\mathrm{m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.55(\mathrm{~d}$, $1 \mathrm{H}, J=11 \mathrm{~Hz}, 0 \mathrm{CH} \mathrm{HPh}), 5.18(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}), 4.88$ $(\mathrm{d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}$,
(38) In instances when the reaction was not allowed to proceed to completion, the corresponding methoxymethyl ester phenol was detected as the major byproduct: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.51(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.22$ (d, $1 \mathrm{H}, J=8.7 \mathrm{~Hz}$), $7.60(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}$, $1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.54(\mathrm{~d}, 1 \mathrm{H}$, $J=8.6 \mathrm{~Hz}), 5.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.49(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 5.32(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.2 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 4.15(\mathrm{~s}, 3 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$.

3H), 2.76 (s, 3H), $2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 169.2$, 168.0,161.5, 155.6, 153.9, 152.8,148.1, 148.0,147.1,142.5, 142.4, 137.5, $136.8,131.1,129.2,128.6,128.0,127.9,124.0,123.9,123.6,121.8,121.0$, $117.5,107.5,98.9,92.5,76.8,61.0,57.2,56.7,55.9,53.9,12.9$; IR (KBr) $\nu_{\max } 2925,1732,1603,1492,1429,1399,1293,1259,1217,1160,1139$, $1095,1016 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 851.0599\left(\mathrm{M}^{+}+\mathrm{Cs}\right.$, $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{BrN}_{2} \mathrm{O}_{9}$ requires 851.0580). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{BrN}_{2} \mathrm{O}_{9}$: C, 60.09; H, 4.90; N, 3.89. Found: C, 60.09; H, 4.91; N, 3.95.

2-(8'-(Benzyloxy)-7'-bromoquinolin- $\mathbf{2}^{\prime}$-yl)-4-($3^{\prime}, 4^{\prime}$-dimethoxy- $\mathbf{2}^{\prime}$-(methoxymethoxy) phenyl)-6-methoxy-5-methylpyridine-3-carboxylicAcid (18). A solution of $17(72 \mathrm{mg}, 0.10 \mathrm{mmol})$ in 1.0 mL of 4 N aqueous LiOH and 1.0 mL of DMSO was warmed at $130^{\circ} \mathrm{C}$ for 6 h . The mixture was allowed to cool to $25^{\circ} \mathrm{C}$, poured into 25 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with EtOAc (60 mL). The organic extract was washed with saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ($2 \times 10 \mathrm{~cm} \mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}_{\mathrm{CH}} \mathrm{CHCl}_{3}$ eluant) afford 18 ($54 \mathrm{mg}, 67.5 \mathrm{mg}$ theoretical, 80%; typically $71-80 \%$) as a white solid: $\mathrm{mp} 185-186^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 8.28(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $(\mathrm{d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.29(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.82(\mathrm{~d}$, $1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.62(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, O C H H P h), 5.29(\mathrm{~d}, 1 \mathrm{H}, J$ $=11 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{Ph}$), 5.09 (d, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCHHOMe}$), 4.86 (d, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$, OCHHOMe), $4.11(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $2.90(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 168.7,161.2$, 156.4,154.2,152.7,148.9,148.3,146.1,142.8,141.9,137.8,137.0,131.2, 128.8, 128.4, 127.9, 127.5, 125.6, 124.5, 123.9, 123.6, 121.5,121.1,118.2, $109.2,99.4,76.6,61.1,56.5,56.0,53.9,12.7$; IR (KBr) $\nu_{\max } 3416,2944$, 1736, 1606, $1586,1508,1492,1460,1294,1098 \mathrm{~cm}^{-1}$; FABHRMS (NBA$\mathrm{CsI}) m / e 807.0318\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{34} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{8}\right.$ requires 807.0318).

3-Amino-2-(8'-(benzyloxy)-7'-bromoquinolin- 2^{\prime}-yl)-4 ($3^{\prime}, 4^{\prime}$-dimethoxy-2^{\prime}-(methoxymethoxy)phenyl)-6-methoxy-5-methylpyridine (19). A solution of $18(50 \mathrm{mg}, 0.074 \mathrm{mmol})$ in 7 mL of benzene was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.105 \mathrm{~mL}, 0.74 \mathrm{mmol}, 10$ equiv) and diphenyl phosphorazidate (DPPA, $0.100 \mathrm{~mL}, 0.74 \mathrm{mmol}, 10$ equiv) at $25^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 min and warmed at reflux for 7 h . The solvent was removed, and the residue was dissolved in 1 mL of THF. The solution was treated with 4 N aqueous $\mathrm{LiOH}(0.400 \mathrm{~mL}, 1.6 \mathrm{mmol}$, 21 equiv), and the resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ and extracted with EtOAc (40 mL). The organic extract was washed with saturated aqueous NaCl (10 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated in vacuo. Flash chromatography ($2 \times 8 \mathrm{~cm} \mathrm{SiO} 2,10 \% \mathrm{EtOAc}$-hexane eluant) afforded 19 (40 $\mathrm{mg}, 47.8 \mathrm{mg}$ theoretical, 84%; typically $79-86 \%$) as a yellow solid: mp $124-125^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.78$ (d, $1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.17(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.29(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 6.47$ (br s, 2H, NH2), $5.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.95(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}$, OCHHOMe), $4.90(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{OCH} H O M e), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.96$ $(\mathrm{s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 100$ $\mathrm{MHz}) \delta 159.6,153.8,153.0,151.5,148.6,143.0,141.7,139.3,137.6$, 137.0, 135.6, 129.6, 128.3, 128.2, 128.0, 127.1, 125.6, 125.0,124.1,123.6, $122.7,120.7,117.2,108.6,98.8,75.1,61.0,56.5,56.1,53.1,13.7$; IR (KBr) $\nu_{\max } 3460,2940,1592,1544,1466,1430,1394,1294,1244,1072$, $967 \mathrm{~cm}^{-1}$; EIMS m/e 647/645 (M+, base); FABHRMS (NBA-CsI) $m / e 778.0553\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{33} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}_{6}\right.$ requires 778.0529).

3-Amino-2-(7^{\prime}-bromo- 8^{\prime}-hydroxyquinolin- $\mathbf{2}^{\prime}$-yl)-4-($\mathbf{3}^{\prime}, 4^{\prime}$-dimethoxy-2'-hydroxyphenyl)-6-methoxy-5-methylpyridine (20). A solution of 19 (28 $\mathrm{mg}, 0.043 \mathrm{mmol}$) in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with 2.5 mL of saturated $\mathrm{HBr}(\mathrm{g})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h (generally $2-6 \mathrm{~h}$) before being quenched with the addition of saturated aqueous NaHCO 3 (10 mL). After all the solids had dissolved, the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic extract was washed with saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ($1 \times 4 \mathrm{~cm} \mathrm{SiO}, 20 \%$ EtOAc-hexane eluant) afforded $20(17.6 \mathrm{mg}, 22.0 \mathrm{mg}$ theoretical, 80%; typically $70-80 \%)^{39}$ as a yellow powder: mp $168-169^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.80(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.36(\mathrm{~d}, 1 \mathrm{H}$,
(39) Treatment of 19 with $\mathrm{HBr}(\mathrm{g})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for shorter reaction periods (0 ${ }^{\circ} \mathrm{C}, 20 \mathrm{~min}, 64 \%$) led to clean deprotection of the methoxymethyl ether: ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.81(\mathrm{~d}, 1 \mathrm{H}, J 8.8 \mathrm{~Hz}), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $7.61(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.39-7.24$ $(\mathrm{m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.61(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.26(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$. This phenol could be cleanly generated by $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ treatment of $19\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or $\mathrm{C}_{6} \mathrm{H}_{6}$, $25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 97-100 \%$) and subsequently converted to 20 upon treatment with $\mathrm{HBr}(\mathrm{g})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
$J=8.8 \mathrm{~Hz}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.83$ $(\mathrm{d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.71(\mathrm{~d}, 1 \mathrm{H}$, $J=8.8 \mathrm{~Hz}), 8.37(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.23$ $(\mathrm{d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz})$, 5.70 (very br s, 4 H), $4.04(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{33} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 158.9,154.0,153.2,148.7,146.8$, $137.7,136.7,136.5,136.0,135.9,130.0,128.54,128.48,126.0,125.0$, 123.7, 122.1, 119.0, 114.8, 104.8, 61.2, 55.9, 53.2, 13.6; IR (KBr) $\nu_{\max }$ 3844, 3681, 2920, 1691, 1664, 1612, 1551, 1492, 1372, 1189, $1095 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 512.0821\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{5}\right.$ requires 512.0821).

3-Amino-2-(7'-bromoquinoline-5', 8^{\prime}-quinon-2'-yl)-4-(3',4'-dimethoxy-2^{\prime}-hydroxyphenyl)-6-methoxy-5-methylpyridine (21). A solution of 20 ($15 \mathrm{mg}, 0.029 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}$) was added to a solution of potassium nitrodisulfonate (Fremy's salt, $78 \mathrm{mg}, 0.29 \mathrm{mmol}, 10$ equiv) and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}\left(10 \mathrm{mg}, 0.029 \mathrm{mmol}, 1\right.$ equiv) in 1 mL of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. The two-phase reaction mixture was stirred vigorously for 4 h before it was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were wa shed with saturated aqueous NaCl (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ($1 \times 5 \mathrm{~cm} \mathrm{SiO} 2,10 \% \mathrm{EtOAc}-\mathrm{CHCl}_{3}$ eluant) afforded 21 (10.6 $\mathrm{mg}, 15.3 \mathrm{mg}$ theoretical, 69%; typically $64-73 \%$) as a dark green solid: $\mathrm{mp} 249-250{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.88$ $(\mathrm{d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.34(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}$, $J=8.6 \mathrm{~Hz}$), $6.65(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.65$ (overlapping br s, 2 H), 5.89 (br s, 1H), $4.02(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 181.9,176.1,163.7,153.2,152.6,146.9$, 144.7,140.7,139.8,139.7,139.3,136.3,136.2,133.7,126.1,125.2, 125.0, $118.4,114.2,104.8,61.2,55.9,53.1,13.8$; IR (KBr) $\nu_{\max } 3461,2922$, 2854, 1693, 1656, 1580, 1451, 1382, 1267, $1094 \mathrm{~cm}^{-1}$; FABHRMS (NBANaI) $m / e 527.0686\left(\mathrm{M}^{+}+2 \mathrm{H}, \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{6}\right.$ (hydroquinone) requires 527.0692).

3-Amino-2-(7'-bromo-6'-methoxyquinoline- $5^{\prime}, 8^{\prime}$-quinon- $\mathbf{2}^{\prime}$-yl)-4-($\mathbf{3}^{\prime}, 4^{\prime}$ -dimethoxy-2'-hydroxyphenyl)-6-methoxy-5-methylpyridine (22). A solution of $21(5.0 \mathrm{mg}, 0.001 \mathrm{mmol})$ in dry THF (0.3 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with a THF solution of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(82 \mu \mathrm{~L}$ of 0.2 M$)$. After 45 min at $0^{\circ} \mathrm{C}, \mathrm{NaOMe}(0.002 \mathrm{mmol}, 2$ equiv, $47 \mu \mathrm{~L}$ of 0.5 M in MeOH) was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with 1 mL of 0.25 M aqueous EDTA and extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with saturated aqueous $\mathrm{NaCl}(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ($1 \times 5 \mathrm{~cm} \mathrm{SiO}, 10 \%$ $\mathrm{EtOAc}-\mathrm{CHCl}_{3}$ eluant) afforded $22(2.3 \mathrm{mg})$ as a dark green solid: mp $285-287{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane) ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.82$ (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.33(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $6.63(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.62\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$, $4.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 6-\mathrm{OCH}_{3}\right), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.98$ ($\mathrm{s}, 3 \mathrm{H}$); IR (KBr) $\nu_{\max } 3464,2960,2854,1695,1660,1580,1503,1451$, $1386,1292 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 556.0719\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{25} \mathrm{H}_{22^{-}}\right.$ $\mathrm{BrN}_{3} \mathrm{O}_{7}$ requires 556.0719).

3-Amino-2-(7^{\prime}-azido- 6^{\prime}-methoxyquinoline- $5^{\prime}, 8^{\prime}$-quinon- $\mathbf{2}^{\prime}$-yl)-4-($3^{\prime}, 4^{\prime}$ -dimethoxy- 2^{\prime}-hydroxyphenyl)-6-methoxy-5-methylpyridine (23). A stirred solution of $22(3.7 \mathrm{mg}, 0.0066 \mathrm{mmol})$ in 0.40 mL of THF was treated with a solution of $\mathrm{NaN}_{3}(0.47 \mathrm{mg}, 0.0073 \mathrm{mmol}, 1.1$ equiv) in $20 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ under N_{2}, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 21 h with protection from light. The solution was poured into 5 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. In practice, crude 23 was used immediately in the subsequent reaction without further purification, and this provided higher overall yields for the two-step conversion of 22 to 24 . For the reaction above, chromatography ($1 \times$ $2 \mathrm{~cm} \mathrm{SiO} 2,40 \%$ EtOAc-hexane eluant) afforded 23 ($3.0 \mathrm{mg}, 3.45 \mathrm{mg}$ theoretical, 85%) as a green solid: $\mathrm{mp}>300^{\circ} \mathrm{C}$ (dec, $\mathrm{Et}_{2} \mathrm{O}$-hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.81(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.31(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.8 \mathrm{~Hz}), 6.80(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}$, and overlapping br s, 2 H$), 5.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.24(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $3.97(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) ;$ IR (KBr) $\nu_{\max } 3455,2950,2111$ $\left(\mathrm{N}_{3}\right), 1656,1572,1449,1291,1241,1097 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 518.1561\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{7}\right.$ requires 518.1550$)$.

3-Amino-2-(7^{\prime}-amino- 6^{\prime}-metboxyquinoline- $5^{\prime}, 8^{\prime}$-quinon- $\mathbf{2}^{\prime}$-yl)-4-($3^{\prime}, 4^{\prime}$ -dimethoxy- 2^{\prime}-hydroxyphenyl)-6-methoxy-5-methylpyridine (24). A stirred solution of $23(2.3 \mathrm{mg}, 0.0038 \mathrm{mmol})$ in 0.4 mL of THF and 0.1 mL of MeOH was treated with powdered $\mathrm{NaBH}_{4}(1.5 \mathrm{mg}, 0.0039 \mathrm{mmol}, 10$ equiv) at $25^{\circ} \mathrm{C}$ under N_{2}, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h. The reaction mixture was quenched with the addition of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$,
extracted with $\mathrm{EtOAc}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Chromatography ($0.5 \times 2 \mathrm{~cm} \mathrm{SiO}, 50 \% \mathrm{EtOAc}$-hexane eluant). afforded 24 ($1.8 \mathrm{mg}, 2.2 \mathrm{mg}$ theoretical, 86%) as a dark solid: $\mathrm{mp} 295-$ $297^{\circ} \mathrm{C}\left(\mathrm{dec}, \mathrm{Et}_{2} \mathrm{O}\right.$-hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.80(\mathrm{~d}, 1 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 8.34(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.64$ (d, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}$), $5.04\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H})$, $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$; $\mathrm{IR}(\mathrm{KBr}) \nu_{\max } 3460,3347,2939$, 1678, 1610, 1585, 1449, 1381, 1346, 1291, 1230, 1097, 1072, $1013 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 625.0695\left(\mathrm{M}^{+}+\mathrm{Cs}+2 \mathrm{H}, \mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7}\right.$ (hydroquinone) requires 625.0699).

In practice, the conversion of 22 was conducted without the purification of 23 and afforded 24 ($65-72 \%, 0.002-0.005 \mathrm{mmol}$).

Streptonigrone (1). A stirred solution of 24 ($1.5 \mathrm{mg}, 0.003 \mathrm{mmol}$) in $200 \mu \mathrm{~L}$ of $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ was treated with $10 \% \mathrm{Pd}-\mathrm{C}(3 \mathrm{mg}, 0.003 \mathrm{mmol}$, 1 equiv). While under a H_{2} atmosphere, $200 \mu \mathrm{~L}$ of $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ saturated with $\mathrm{HBr}(\mathrm{g})$ was added. The sealed reaction vessel was warmed in an $80^{\circ} \mathrm{C}$ oil bath for 1 h . After being cooled to $25^{\circ} \mathrm{C}$, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, neutralized with the addition of saturated aqueous NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The residual Pd was removed by filtration, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed in vacuo. Chromatography ($0.2 \times 2 \mathrm{~cm}$ $\mathrm{SiO}_{2}, 8: 1: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}$-acetone eluant) afforded streptonigrone (1; $R_{f}=0.56, \mathrm{SiO}_{2}, 8: 1: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}$-acetone), identical in all respects with the properties of a sample of authentic material: $\mathrm{mp}>300^{\circ} \mathrm{C}$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), lit $\mathrm{mp} 268-69^{\circ} \mathrm{C}^{1 \mathrm{~s}}$ and $>300^{\circ} \mathrm{C}^{1 \mathrm{~b}} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 8.34(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.30(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.81$ (d, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}$), $6.63(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}$), 6.20 (very br s, 1 H), 5.04 (br s, 1H), $4.06(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$; IR (KBr) $\nu_{\max } 3453,3344,2923,2850,1684,1645,1610,1582,1507,1460,1350$,

1292, 1236, 1098, 1075, 999, 918, 794, 754, cm^{-1}; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}$ $425 \mathrm{~nm}(\epsilon 12500)$; UV ($\mathrm{CH}_{3} \mathrm{OH}-\mathrm{HCl}$) $\lambda_{\max } 342 \mathrm{~nm}(\epsilon 15000)$; FABHRMS (NBA) m/e 479.1582 ($\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires 479.1567). ${ }^{40}$

General Procedure for the Preparation of 7-Bromo-6-methoxyquinoline-5,8-quinones 28 (Table I). A stirred solution of the anhydrous Lewis acid in THF was treated with substrate ($27 \mathrm{a}, \mathrm{b}, 0.01 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under N_{2}, and the mixture was stirred for $30 \mathrm{~min} . \mathrm{NaOCH}_{3}(0.5 \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{OH}$ was added, and the mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}$ and 1 h at 25 ${ }^{\circ} \mathrm{C}$. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ or 0.25 M aqueous EDTA (5 mL , for $\mathrm{Ti}(\mathrm{OR})_{4}$) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic phases were combined and washed with saturated aqueous $\mathrm{NaCl}(1 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2}, 20-40 \%$ EtOAc-hexane gradient elution) afforded the 7 -bromo-6-methoxyquinoline-5,8-quinones 28a,b as solids, identical in all respects with authentic materials. ${ }^{16}$

Acknowledgment. This work was assisted through the financial support of the National Institutes of Health (Grant CA 42056). We are grateful for the generous supply of 4 provided by J. Zhou, and we acknowledge J. Galeno for his contributions to the work (Scheme III, $9 \rightarrow 11$, and Scheme V). We wish to thank Dr. Preobrazhenskaya for a small sample of authentic streptonigrone, Dr. R. W. Rickards for copies of the streptonigrone ${ }^{1} \mathrm{H}$ NMR and EIMS data, and D. R. Galt for bringing to our attention the $\mathrm{Fe}(\mathrm{CO})_{s}$-catalyzed preparation of 12.
(40) Synthetic 1 and naturally derived 1, unlike streptonigrin (2), are racemic: R. W. Rickards, personal communication.

[^0]: Abstract published in Advance ACS Abstracts. October 15, 1993.
 (1) (a) Herlt, A. J.; Rickards, R. W.; Wu, J. P. J. Antibiot. 1985, 38, 516. (b) Kozlova, N. V.; Lvova, N. A.; Lapchinskaya, O. A.; Dokuchaeva, E. B.; Rubasheva, L. M.; Rozynov, B. V.; Preobrzhenskaya, M. N. Antibiot. Khim. 1990, 35, 13. (c) Preobrazhenskaya, M. N.; Holpne-Kozlova, N. V.; Lazhko, E. I. J. Antibiot. 1992, 45, 227.
 (2) Rao, K. V.; Biemann, K.; Woodward, R. B. J. Am. Chem. Soc. 1963, 85, 2532. Chiu, Y.-Y.; Lipscomb, W. N. J. Am. Chem. Soc. 1975, 97, 2525 . (3) Gould, S. J.; Weinreb, S. M. Fortschr. Chem. Org. Naturst. 1982, 41,
 (4) Doyle, T. W.; Balitz, D. M.; Grulich, R. E.; Nettleton, D. E.; Gould, S. J.; Tann, C.; Moews, A. E. Tetrahedron Lett. 1981, 22, 4595. Balitz, D. M.; Bush, J. A.; Bradner, W. T.; Doyle, T. W.; O'Herron, F. A.; Nettleton, D. E. J. Antibiot. 1982, 35, 259.
 (5) Liu, W. C.; Barbacid, M.; Bulgar, M.; Clark, J. M.; Crosswell, A. R.; Dean, L.; Doyle, T. W.; Fernandes, P. B.; Huang, S.; Manne, V.; Pirnik, D. M.; Wells, J. S.; Meyers, E. J. Antibiot. 1992, 45, 454.
 (6) Take, Y.; Inouye, Y.; Nakamura, S.; Allaudeen, H. S.; Kubo, A. J. Antibiot. 1989, 42, 107. Okada, H.; Mukai, H.; Inouye, Y.; Nakamura, S. J. Antibiol. 1986, $39,306$.
 (7) Inouye, Y.; Take, Y.; Oogose, K.; Kubo, A.; Nakamura, S. J. Antibiot. 1987, 40, 105. Take, Y.; Oogose, K.; Kubo, T.; Inouye, Y.; Nakamura, S.; Kitahara, Y.; Kubo, A. J. Antibiot. 1987, 40, 679 . Inouye, Y.; Oogose, K.; Take, Y.; Kubo, T.; Nakamura, S. J. Antibiot. 1987, 40, 702. Oogose, K.; Hafuri, Y.; Takemori, E.; Nakata, E.; Inouye, Y.; Nakamura, S.; Kubo, A. J. Antibiot. 1987, 40, 1778. Inouye, Y.; Take, Y.; Nakamura, S.; Nakashima, H.; Yamamoto, N.; Kawaguchi, H. J. Antibiot. 1987, 40, 100. Hafuri, Y.; Takemori, E.; Oogose, K.; Inouye, Y.; Nakamura, S.; Kitahara, Y.; Nakahara, S.; Kubo, A. J. Antibiot. 1988, 41, 1471.
 (8) Streptonigrin: Weinreb, S. M. Strategies Tactics Org. Synth. 1984, 1, 325. Weinreb, S. M.; Basha, F. Z.; Hibino, S.; Khatri, N. A.; Kim, D.; Pye, W. E.; Wu, T.-T. J. Am. Chem. Soc. 1982, I04, 536. Basha, F. Z.; Hibino, S.; Kim, D.; Pye, W. E.; Wu, T.-T.; Weinreb, S. M. J. Am. Chem. Soc. 1980, 102, 3962 . Kende, A. S.; Lorah, D. P.; Boatman, R. J. J. Am. Chem. Soc. 1981, 103, 1271. Kende, A. S.; Ebetino, F. H.; Battista, R.; Boatman, R. J.; Lorah, D. P.; Lodge, E. Heterocycles 1981, 21, 91. Boger, D. L.; Panek, J.S. J. Am. Chem. Soc. 1985, 107, 5745. Boger, D. L.; Panek, J. S. J. Org. Chem. 1983, 48, 621.

[^1]: (9) Kende, A. S.; Ebetino, F. H. Tetrahedron Lett. 1984, 25, 923. Boger, D. L.; Duff, S. R.; Panek, J. S.; Yasuda, M. J. Org. Chem. 1985, 50, 5790. Hibino, S.; Okazaki, M.; Ichikawa, M.; Sato, K.; Ishizu, T. Heterocycles 1985, 23, 261. Rao, A. V. R.; Chavan, S. P.; Sivadasan, L. Tetrahedron 1986, 42, 5065 .
 (10) Review: Boger, D. L. Strategies Tactics Org. Synth. 1988, $2,1$.
 (11) Boger, D. L.; Yasuda, M.; Mitscher, L. A.; Drake, S. D.; Kitos, P. A.; Thompson, S. C. J. Med. Chem. 1987, 30, 1918.
 (12) (a) Boger, D. L. Chem. Rev. 1986, 86,781. Boger, D. L. Bull. Soc. Chim. Belg. 1990, 99, 599. (b) Boger, D. L.; Weinreb, S. M. Hetero DielsAlder Methodology in Organic Synthesis; Academic Press: San Diego, CA, 1987. (c) Boger, D. L. Tetrahedron 1983, 39, 2869.
 (13) Boger, D. L.; Nakahara, S. J. Org. Chem. 1991, 56, 880.
 (14) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A. M. J. Am. Chem. Soc. 1991, 113, 1713. Boger, D. L.; Corbett, W. L. J. Org. Chem. 1993, 58, 2068. Boger, D. L.; Curran, T. T. J. Org. Chem. 1990, 55, 5439. Boger, D. L.; Corbett, W. L.; Wiggins, J. M. J. Org. Chem. 1990, 55, 2999. Boger, D. L.; Kasper, A. M. J. Am. Chem. Soc. 1989, 111, 1517. For related studies, see: Teng, M.; Fowler, F. W. J. Org. Chem. 1990, 55, 5646. Teng, M.; Fowler, F. W. Tetrahedron Lett. 1989, 30, 2481.
 (15) Boger, D. L.; Duff, S. R.; Panek, J. S.; Yasuda, M. J. Org. Chem. 1985, $50,5782$.
 (16) Boger, D. L.; Yasuda, M. Heterocycles 1986, 24, 1067
 (17) Cheng, C. C.; Yan, S. J. Org. React. 1982, 28, 37.

[^2]: (18) Reichstein, T.; Oppenauer, R.; Grussner, A.; Hirt, R.; Rhyner, L.; Glatthaar, C. Helv. Chim. Acta 1935, 18, 816.
 (19) Brown, C.; Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Perkin Trans. 2 1978, 822. Brown, C.; Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Chem. Commun. 1977, 540 . Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Chem. Commun. 1976, 831.
 (20) Boger, D. L.; Corbett, W. L. J. Org. Chem. 1992, 57, 4777.
 (21) Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561.

[^3]: (22) Mueller, F. J.; Eichen, K. German Patent 2331675; Chem. Abstr. 1974, 81, 63153v.
 (23) No reaction was observed when 11 was treated with ethoxyacetylene (20 equiv, $25-90^{\circ} \mathrm{C}, 16-24 \mathrm{~h}$).
 (24) Flash chromatography of the crude Diels-Alder product resulted in hydrolysis of the orthoester to provide the corresponding methyl ester: ${ }^{1} \mathrm{H}$ $\left.\mathrm{NMR}^{(C D C l}{ }_{3}, 200 \mathrm{MHz}\right) \delta 11.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.32(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.82(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~m}$, $2 \mathrm{H}), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.9-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.43$ and 3.41 (two s, 3H, OCH_{3}), 3.21 and 3.19 (two s, $3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{Me}$), 2.52 (m, 1H), 0.98 and 0.97 (two d, $3 \mathrm{H}, J=5 \mathrm{~Hz}$); CIMS (2-methylpropane) $m / e 713 / 711$ ($\mathrm{M}^{+}+\mathrm{H}$), 633/631 (base).

[^4]: (25) Scheeren, H. W.; Aben, R. W. M.; Ooms, P. H. J.; Nivard, R. J. F. J. Org. Chem. 1977, 42, 3128.
 (26) Shiori, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203. Ninomiya, K.; Shioiri, T.; Yamada, S. Tetrahedron 1974, 30, 2151.
 (27) Attempted Curtius rearrangement on 16 directly ($(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}$, $\mathrm{Et}_{3} \mathrm{~N}, t-\mathrm{BuOH}$, reflux, 3.5 h) provided predominantly $15(50 \%)$.

[^5]: (28) For the acyl azide derivative of the isocyanate of 19: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $200 \mathrm{MHz}) \delta 9.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.31(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.29(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.7 \mathrm{~Hz}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.69(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz})$ $7.49-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.94$ $(\mathrm{d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{OCHHOMe}), 4.84(\mathrm{~d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{OCH} H O M e)$, $4.07(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$; IR (KBr) $\nu_{\max } 3856,2942,2140,1712,1654,1490,1360,1160 \mathrm{~cm}^{-1}$.
 (29) Corey, E. J.; Hopkins, P. B.; Yoo, S.; Kim, S.; Nambiar, K. P.; Falck, J. R. J. Am. Chem. Soc. 1979, 101, 7131.

[^6]: (30) (a) For 25: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.48(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz})$, $8.23(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43$ (d, $1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.41-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.53(\mathrm{~d}, 1 \mathrm{H}$, $J=8.7 \mathrm{~Hz}), 5.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.56(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 5.53(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.2 \mathrm{~Hz}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, 3H). For 26: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.43(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.24$ $(\mathrm{d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, 1 \mathrm{H}$, $J=8.8 \mathrm{~Hz}), 7.41-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.54(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.6 \mathrm{~Hz}), 5.58(\mathrm{~d}, 1 \mathrm{H}, J=11 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=11 \mathrm{~Hz}), 5.18(\mathrm{~d}, 1 \mathrm{H}$, $J=5 \mathrm{~Hz}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=5 \mathrm{~Hz}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$. (b) Catalytic hydrogenolysis $\left(\mathrm{H}_{2}\right.$, $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{CH}_{3} \mathrm{OH}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 75 \%$ or $10 \% \mathrm{Pd}-\mathrm{C}, 25 \%$ aqueous $\mathrm{HCO}_{2}-$ $\mathrm{NH}_{4}, \mathrm{THF}, 25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 75 \%$) was accompanied by debromination to provide 3-amino-4-(3,4-dimethoxy-2-hydroxyphenyl)-2-(8-hydroxyquinolin-2-yl)-6-methoxy-5-methylpyridine: ${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 250 \mathrm{MHz}\right) \delta 8.78(\mathrm{~d}, 1 \mathrm{H}$, $J=8.8 \mathrm{~Hz}), 8.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $(\mathrm{m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.41(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $4.94(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}, О С Н \mathrm{HOMe}), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}, О \mathrm{OCH} H O \mathrm{Me})$, 4.03 (s, 3H), 3.94 (s, 3H), 3.87 (s, 3H), 3.03 (s, 3H), 1.95 (s, 3H).
 (31) Zimmer, H.; Lankin, D. C.; Horgan, S. W. Chem. Rev. 1971, 71, 229.

[^7]: (32) Pratt, Y. T. J. Org. Chem. 1962, 27, 3905.
 (33) $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ was distilled prior to use, and a 0.5 M solution in THF was prepared. LiCl and ZnBr_{2} weredried in vacuo, and 0.5 M THF solutions were prepared. $\mathrm{Mg}(\mathrm{OMe})_{2}$ was prepared as a 0.5 M solution in MeOH from Mg metal and anhydrous methanol. A 0.5 M solution of $\mathrm{Ti}(\mathrm{OMe})_{4}$ was prepared in situ with the addition of NaOMe to TiCl_{4} in THF at $0^{\circ} \mathrm{C}$.

[^8]: (34) For 30: $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.79(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $8.38(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.65\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, $6.64(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 5.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.02(\mathrm{~s}$, 3H), $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) ;$ FABMS (NBA) $m / e 478\left(\mathrm{M}^{+}+\mathrm{H}\right.$, base).
 (35) Rao, H. V.; Beach, J. W. J. Med. Chem. 1991, 34, 1871.
 (36) For 33: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.72(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $8.25(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.80(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.62(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz})$, 6.42 (br s, 1 H$), 5.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.68(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, 3.94 (s, 3H), 1.98 (s, 3H).
 (37) This included an examination of the following: $\mathrm{TMSCl}-\mathrm{NaBr}, \mathrm{CH}_{3}-$ $\mathrm{CN}, 16 \mathrm{~h} ; \mathrm{MeSO}_{3} \mathrm{H}-\mathrm{NaBr}, i-\mathrm{PrOH}$, reflux, 14 h ; TsOH- $\mathrm{NaBr}, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, $80^{\circ} \mathrm{C}, 6 \mathrm{~h}, 10$ equiv of $\mathrm{SnCl}_{2} ; \mathrm{HBr}(\mathrm{g})-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 48 \% \mathrm{HBr}-$ HOAc; concentrated $\mathrm{HCl}, 100^{\circ} \mathrm{C}, 1-3 \mathrm{~h}, 10$ equiv of SnCl_{2}.

